
Enigma
A programming language Version 0.1

Niels Serup (ns@metanohi.org)

mailto:ns@metanohi.org

This manual is for Enigma, version 0.1. Copyright c© 2010 Niels Serup
Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, no Front-
Cover Texts, and no Back-Cover Texts. A copy of the license is included in the
section entitled "GNU Free Documentation License".
This document is also available under the terms of the Creative Commons
Attribution-Share Alike 3.0 (or any later version) Unported license. A copy of
the license is available at http://creativecommons.org/licenses/by-sa/3.0/
legalcode.

http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://creativecommons.org/licenses/by-sa/3.0/legalcode

i

Table of Contents

1 A short introduction . 1

2 The language . 2
2.1 Operators . 2
2.2 Numbers . 2
2.3 Strings . 3
2.4 Lists . 3
2.5 Booleans . 3
2.6 Files . 3
2.7 Functions . 3
2.8 Conditionals . 4
2.9 Loops . 5
2.10 Undefined behaviour . 5

3 Future aspects . 6

4 Implementations . 7

5 Comparison with other languages . 8
5.1 Assigning values . 8
5.2 Conditionals . 8
5.3 Looping . 8
5.4 Functions . 9

6 Built-in values and functions . 10
6.1 Values . 10
6.2 Functions . 10

Appendix A GNU Free Documentation License 12

Index . 19

Chapter 1: A short introduction 1

1 A short introduction

Today, in the world of programming, the commonly used programming languages have — to
some extent — adapted the same basic syntax. Both C, C++, Java, Python and Ruby (and
others) all share several paradigms, even though they are still very different. Enigma, on the
other hand, is very different from the “common” languages. See this small program to get an
idea of Enigma:
{/a,b/

a 2 ! multiply = c;
b c ! add = return;

} = odd-add;

9 4 ! odd-add | stdout temp ! write;

Here, 9 is first multiplied with 2 and then added to 4. The program then prints the result (22).
With only a few constructs and built-in variables, Enigma is quite small and relatively simple.

Any logic can be expressed in Enigma. The above example may seem odd, but its aspects will
be dealt with in the next chapter.

Enigma is not the kind of programming language that likes to control programmers. When
programming in Enigma, one creates functions that call other functions — instead of creating
functions that are called by built-in functions.

On the other hand, Enigma is very restrictive. There are limits to certain things. If these
limits were not present, chaos would ensue. Perhaps.

Like many other languages, Enigma is quite fond of pointers. In Enigma, all variables are
pointers. When x is assigned to a, and b is assigned to a, changing b also changes a. As a
matter of fact, when two pointers points to the same place, they are forever linked together.

Enigma is not recommended for serious use. Use with caution!

Chapter 2: The language 2

2 The language

Enigma consists of functions. Any file being parsed is a function. Within functions there can
be local variables. These variables are to disappear when the function exits.

Functions have return values. These values can be determined by the programmer.

Within functions, there are commands. These commands constitute the very base of Enigma.
Commands can interact with built-in functions, meaning that writing to and reading from files,
calculating, as well as manipulating strings and lists, is possible.

There are no simple types. Enigma lies in the world of objects. Numbers, strings, lists.. It’s
just objects. Also, all commands must end with a semicolon;

2.1 Operators

Enigma has 4 operators: !, =, |, and *. ! and = are the most important ones.

To assign values to variables, use the = operator. For example:

obj = hello-string;

Here, the variable hello-string receives the object obj. Note the syntax. The objects
comes first. Unless hello-string is already defined, it is created as a local variable.

Now, say we have a function called think and we want to send objects to it. This is how
that’s done:

obj1 obj2 obj3 ! think;

There are no limits to the amount of objects that can be sent to a function. Whitespace
characters are used to separate objects, also when assigning them to a variable. There is a
difference between using one object and more objects as arguments, though. When using only
one object, that object is simply used, but when using more objects, a list containing all objects
is created and transmitted instead. So, in reality, when assigning two or more objects to a
variable, the variable points to a list with the objects. More about lists later.

The | operator is merely a shortcut operator. It can merge several commands into one, long
command. See the following example:

Long version
a ! b = c;
d c ! e = c;
Short version
a ! b | d temp ! e = c;

Here, a is sent to b, which is then — together with d — sent to e and saved in c. The | acts
like the semicolon, but it copies the return value of the last function (in this case b) and stores
the value in the local variable temp. Hackers are encouraged to use this operator.

The final operator, *, has the same function as =, except that it works on a global level. So,
if the code is b = a; and a does not exist, it is created — in the global space.

2.2 Numbers

Numbers in Enigma can be arbitrarily large. They are written as one usually writes numbers.
Currently only the decimal system is supported.

7587 = age;
2556 ! numfunc;

Chapter 2: The language 3

2.3 Strings

Strings are defined using the " character.
"This is a string!" " This too!" ! add;
"A" = A;
"Now comes
a newline" = nl;
"\"\\\n\t\
" = escaped;

2.4 Lists

Lists are special in Enigma. They are used a lot, but unlike eg. numbers and strings they cannot
be defined in their own syntax. When one writes this:
123 "witch" = lst;

..one creates a list. Lists can be nested.

2.5 Booleans

Booleans are used a lot in Enigma. The predefined variables true and false can be used.

2.6 Files

Files can only be created using the built-in function open. Files are either readable or writeable.
If a file is writeable, text written to the file may optionally be appended to any existing text.
"a" "r" ! open = f1;
"b" "w" ! open = f2;
"c" "a" ! open = f3;

Read one character
f1 ! read | stdout temp ! write;
Write a string
f2 "Aaar" ! write;
Append a string
f3 "Ouu" ! write;

f1!close;f2!close;f3!close;

To read an entire file, one must use a loop construct. See Section 2.9 [Loops], page 5. When
there are no more characters left, the read function returns an empty string. Using equality
testing, reading a complete file is thus possible. See Section 2.8 [Conditionals], page 4.
filename "r" ! open = f;
{f ! read = c; stdout c ! write; c "" ! equal ! not = return;} ! loop;

At this point, it may not be obvious why this works. This will be explained in the next
sections.

2.7 Functions

Functions are defined and called using the following syntax:
Defining them
{stdout "Hello" ! write;} = func;
{/x,y/stdout "x=" x ", y=" y!write;} = coorprint;
{stdout args ! write;} = aprint;

Chapter 2: The language 4

Calling them
!func; # Outputs "Hello"
52 12 ! coorprint; # Outputs "x=52, y=12"
999 "abc" 21 ! aprint; # Outputs "999 abc 21"

Arguments can thus be accessed either by using the /.../ syntax in the beginning of the
function or by using the local args variable. Furthermore, to make all new variables save in the
global space, prepend the function content with a *. This will have the same effect as replacing
all = signs in the function with the * operator.

Remember that your file is also a function, just without the curly brackets. This means that
when working on the top level of your program, args actually refer to the arguments specified
on the command line. All arguments are strings, but built-in functions that can convert them
to numbers exist.

The previous example functions did not have any return values. This is merely because they
didn’t need such things. To define a return value, the return value must be sent to the special
variable return.

{/a,b/a b ! multiply = return;} = 2mul;
33 3 ! 2mul = 2mult;
stdout 2mult ! write;

The execution of a function does not stop when a value is assigned to return. This has both
advantages and disadvantages.

Many things are almost impossible to do without the built-in functions. Some are completely
impossible. See Chapter 6 [Built-In], page 10. As all objects in Enigma are pointers, several
built-in functions actually modify the objects sent to them as arguments. To solve this problem,
one must use the clone function.

2.8 Conditionals

Any value can be related to another value. 78 is less than 85. 2 equals 2. "Hi" is not "Bye".
Enigma comes with a basic set of functions that can be used to test these relations. The functions
greater, lesser, equal, not, or and and are available. These functions return either true or
false. To run a function on the condition that a relational function has returned true, use the
function act.

While lesser and greater are aimed at numbers only, and and, or and not are aimed at
booleans only, equal can be used on all objects. It tests for all equalities.

2 = a;
4 = b;

a 2 ! add | temp b ! equal = cond1;
"47" ! num | temp 48 ! greater = cond2;

cond1 cond2 ! and | temp write stdout "4 = 4 and 47 > 48\n" ! act;
cond1 cond2 ! or | temp write stdout "4 = 4 or 47 > 48\n" ! act;
cond2 ! not | cond1 temp ! and | temp write stdout "4 = 4 and !(47 >
48)\n" ! act;

Even simpler, one can do this (though there’s no real need for it):

Instead of stdout "Hello" !write;
true write stdout "Hello" !act;

Chapter 2: The language 5

2.9 Loops

There are several ways to loop pieces of code in Enigma. One can create a function that calls
itself, for example. It is, however, advised to use the loop function.
Infinite loop
{stdout "Forever\n" ! write; true = return;} ! loop;

loop works a bit like act, except that it runs on the premise of the return value of the
function it calls. If it returns true, or any other value that can be considered true (non-zero
numbers, non-empty strings, files, etc.), it runs the function again. If it returns false, the loop
stops. It naturally runs the first time no matter what (no return value has been created yet).

2.10 Undefined behaviour

Enigma is still new. The way built-in functions act, the way error messages appear, and the way
some odd details of the language works are still undefined. In general, when something seems
likely to work, it will work. But it’s not necessarily defined to work.

Chapter 3: Future aspects 6

3 Future aspects

As Enigma is right now, it is quite limited. The only way that it can interact with the rest of
one’s system is by reading and writing files and by executing shell commands using the system
built-in function. This obviously needs to be improved. A foreign function interface system
must be implemented in version 0.2. It should be possible for Enigma to do everything C can.

The number of built-in functions seems reasonable, but it may be a good idea to implement
a few more. These eventual functions should be focused on making things easier. Specifically,
an import function should be considered. It is possible to create an import function in Enigma
directly, but it’s not exactly fast. Introducing a “compile” function should solve that.

Chapter 4: Implementations 7

4 Implementations

As of right now (beginning of June 2010) there is only one implementation. It is written in
Java and is called enigma (with a lowercase e). The code is bulky and was not written by an
experienced Java hacker. For v0.2 it may be a good idea to write the interpreter in C instead.
Implementing a foreign function interface should be easier that way.

The current implementation can be downloaded at http://metanohi.org/projects/
enigma.

http://metanohi.org/projects/enigma
http://metanohi.org/projects/enigma

Chapter 5: Comparison with other languages 8

5 Comparison with other languages

5.1 Assigning values

C:� �
type var = value;
 	

Python:� �
var = value
 	

Enigma:� �
value = var;
 	

5.2 Conditionals

C:� �
if ((a == 2 && b < 5) || (c != 4 && !d)) do_something();
 	

Python:� �
if (a == 2 and b < 5) or (c != 4 and not d): do_something()
 	

Enigma:� �
a 2 ! equal = cond-a;
b 5 ! lesser = cond-b;
c 4 ! equal ! not = cond-c;
d ! not = cond-d;
cond-a cond-b ! and = ncond-ab;
cond-c cond-d ! and = ncond-cd;
ncond-ab ncond-cd ! or = actcond;
actcond do-something ! act;
 	

5.3 Looping

C:� �
while (thinking) run();

for (int i = 0; i < 18; i++) run(i);
 	
Python:

Chapter 5: Comparison with other languages 9� �
while thinking: run()

for i in range(18): run(i)
 	
Enigma:� �
{!run; thinking ! clone = return;} ! loop;

0 = i;
{i ! run; i 1 ! add; i 18 ! equal = return;} ! loop;
 	

5.4 Functions

C:� �
int time(float space) {

return (int) space / 3;
}

t = time(81.65);
 	
Python:� �
def time(space):

return int(space / 3)

t = time(81.65)
 	
Enigma:� �
{/space/space 3 ! divide ! clone ! round = return;} = time;

81.65 ! time = t;
 	

Chapter 6: Built-in values and functions 10

6 Built-in values and functions

6.1 Values

The following variables are special and can be accessed anytime. They can even be overwritten.
args, return, temp, stdin, stderr, stdout, zero, true, false, none, @pi,
@e, cwd, cpd, fnm

zero is a fake writable file that does nothing. none is an abstract variable with an internal
value of.. none. @pi is Pi. @e is Euler’s number. cwd is the directory from which Enigma is
run, cpd is the directory in which the current program file resides, and fnm is the filename of
the current program file. The rest are self-explanatory — and args, return and temp are extra
special.

6.2 Functions

Enigma has few built-in functions. But they do exist.
str(OBJECT...): Converts all supplied values to strings.
num(OBJECT...): Converts all supplied values to numbers.
list(OBJECT...): Puts all supplied values in a list and destroys nested lists at one level.
bool(OBJECT...): Converts all supplied values to booleans.
code(OBJECT...): Converts all supplied values to code strings.
repr(OBJECT...): Converts all supplied values to representational strings. Strings get
prepended and appended by " characters, code objects are surrounded by { and }, and so
on.
type(OBJECT...): Converts all supplied values to type strings (string, number, file, etc.).
len(OBJECT...): Converts all supplied values to their length. This can be used for both strings
and lists.
clone(OBJECT...): Clones all supplied values. When an object is cloned, its value is assigned
to a new variable. The list of clones is returned.
slice(LIST|STRING, NUMBER, NUMBER): Returns a list value sliced according to the first and
second number if the first variable is a list variable, or a substring if the first variable is a string
variable.
loop(FUNCTION, [OBJECT]...): Executes function until it returns false. Sends the rest of the
specified variables (if any) to the function as arguments.
open(STRING, STRING): Opens the file by the name of the first string, using the second string
as its guide as to how it should be opened. "r" means to read, "w" means to write, and "a"
means to append. Returns a file object.
close(FILE...): Closes files.
read(FILE): Reads one character of a file and returns it. If no more characters are present, an
empty string is returned.
write(FILE, STRING): Writes a string to a file.
greater(NUMBER, NUMBER...: Checks if the first number is greater than the rest and returns
true or false.
lesser(NUMBER, NUMBER...: Checks if the first number is lesser than the rest and returns true
or false.
equal(OBJECT, OBJECT...: Checks if the objects are equal and returns true or false.
and(BOOLEAN...): Checks if all booleans are true and returns true or false.

Chapter 6: Built-in values and functions 11

or(BOOLEAN...): Checks if at least one boolean is true and returns true or false.
not(BOOLEAN...): Converts values of true to values of false, and vice-versa.
act(BOOLEAN, FUNCTION, [OBJECT]...): Run the function with the optional objects as argu-
ments if the boolean is true.
system(STRING...): Join the strings and run the result as a system command.
add(NUMBER|STRING|CODE|LIST...): Add objects together. Numbers, strings, code strings
and lists can be used, but only with similar types. The type of the first object determines what
types the rest must be. The result is stored in the first object and also returned.
subtract(NUMBER...): Subtract numbers from each other. The first object receives the final
number. It is also returned.
multiply(NUMBER...): Multiply numbers with each other. The first object receives the final
number. It is also returned.
divide(NUMBER...): Divide numbers with each other. The first object receives the final number.
It is also returned.
mod(NUMBER, NUMBER): Finds the remainder of the first number divided with the second number
and returns it as a new variable.
pow(NUMBER, NUMBER): Returns first number^second number.
log(NUMBER, [NUMBER]): Returns the logarithm of the first number. If the second number is
not specified, the natural logarith is used.
random(): Returns a random number between 0 and 1.
abs(NUMBER...): Sets and returns absolute values of numbers.
round(NUMBER, NUMBER): Rounds the first number with x decimals, where x is the second
number.
floor(NUMBER, NUMBER): Floors the first number with x decimals, where x is the second number.
ceil(NUMBER, NUMBER): "Ceils" the first number with x decimals, where x is the second number.
sin(NUMBER...): Sets and returns sine values.
cos(NUMBER...): Sets and returns cosine values.
tan(NUMBER...): Sets and returns tangent values.
asin(NUMBER...): Sets and returns arcsine values.
acos(NUMBER...): Sets and returns arccosine values.
atan(NUMBER...): Sets and returns arctangent values.
sinh(NUMBER...): Sets and returns hyperbolic sine values.
cosh(NUMBER...): Sets and returns hyperbolic cosine values.
tanh(NUMBER...): Sets and returns hyperbolic tangent values.

Appendix A: GNU Free Documentation License 12

Appendix A GNU Free Documentation License

Version 1.3, 3 November 2008
Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and useful
document free in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as “you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.
A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.
The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25
words.

http://fsf.org/

Appendix A: GNU Free Documentation License 13

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ascii without markup,
Texinfo input format, LaTEX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modifica-
tion. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary word proces-
sors, SGML or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word processors
for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, “Title Page” means the
text near the most prominent appearance of the work’s title, preceding the beginning of the
body of the text.
The “publisher” means any person or entity that distributes copies of the Document to the
public.
A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the
Title” of such a section when you modify the Document means that it remains a section
“Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both

Appendix A: GNU Free Documentation License 14

covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to
the covers, as long as they preserve the title of the Document and satisfy these conditions,
can be treated as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copy-

right notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating

at least the title, year, new authors, and publisher of the Modified Version as given
on the Title Page. If there is no section Entitled “History” in the Document, create
one stating the title, year, authors, and publisher of the Document as given on its

Appendix A: GNU Free Documentation License 15

Title Page, then add an item describing the Modified Version as stated in the previous
sentence.

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

Appendix A: GNU Free Documentation License 16

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled
“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.
You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in
the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a
notice or disclaimer, the original version will prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing
the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute
it is void, and will automatically terminate your rights under this License.
However, if you cease all violation of this License, then your license from a particular copy-
right holder is reinstated (a) provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the copyright holder fails to
notify you of the violation by some reasonable means prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first
time you have received notice of violation of this License (for any work) from that copyright
holder, and you cure the violation prior to 30 days after your receipt of the notice.

Appendix A: GNU Free Documentation License 17

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation. If the
Document specifies that a proxy can decide which future versions of this License can be
used, that proxy’s public statement of acceptance of a version permanently authorizes you
to choose that version for the Document.

11. RELICENSING
“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for anybody
to edit those works. A public wiki that anybody can edit is an example of such a server. A
“Massive Multiauthor Collaboration” (or “MMC”) contained in the site means any set of
copyrightable works thus published on the MMC site.
“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published
by Creative Commons Corporation, a not-for-profit corporation with a principal place of
business in San Francisco, California, as well as future copyleft versions of that license
published by that same organization.
“Incorporate” means to publish or republish a Document, in whole or in part, as part of
another Document.
An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.
The operator of an MMC Site may republish an MMC contained in the site under CC-BY-
SA on the same site at any time before August 1, 2009, provided the MMC is eligible for
relicensing.

http://www.gnu.org/copyleft/

Appendix A: GNU Free Documentation License 18

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

Index 19

Index

A
arrays . 3

B
booleans . 3
built-in functions . 10
built-in values . 10

C
characters . 3
close . 3

E
enigma . 7

F
files . 3
functions . 3

L
lists . 3

N
numbers . 2

O
open . 3

operators . 2

P
pointers . 1

R
read . 3

S
strings . 3

W
write . 3

	A short introduction
	The language
	Operators
	Numbers
	Strings
	Lists
	Booleans
	Files
	Functions
	Conditionals
	Loops
	Undefined behaviour

	Future aspects
	Implementations
	Comparison with other languages
	Assigning values
	Conditionals
	Looping
	Functions

	Built-in values and functions
	Values
	Functions

	GNU Free Documentation License
	Index

